在生产、生活的实际中,用户用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。而用水和供水之间的不平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用水少而供水多,则压力大。保持供水压力的恒定,可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。
图3-1 住宅区恒压供水示意图
恒压供水是指在供水网中用水量发生变化时,出水口压力保持不变的供水方式。供水网系出口压力值是根据用户需求确定的。传统的恒压供水方式是采用水塔、高位水箱、气压罐等设施实现的。随着变频调速技术的日益成熟和广泛的应用,利用内部包含用PID调节器、单片机、PLC等器件有机结合的供水专用变频器构成控制系统,调节水泵输出流量,以实现恒压供水。变频器恒压供水,如上图3-1所示。
利用变频器内部的PID调节功能,如图3-2,目标信号SP是一个与压力的控制目标相对应的值,通常用百分数表示。反馈信号PV是压力变送器PS反馈回来的信号,该信号是一个反映实际压力的信号。SP和PV两者是相减的,其合成信号MV=(SP-PV),经过PID调节处理后得到频率给定信号,决定变频器的输出频率f。当用水流量减小时,供水能力QG>用水流量QU,则供水压力上升,PV↑,合成信号(SP-PV)↓,变频器输出频率f↓,电动机转速n↓,供水能力QG↓直至压力大小回复到目标值,供水能力与用水流量重新平衡(QG=QU)时为止;反之,当用水流量增加,使QG
2、“一拖多”恒压供水
实际应用中,单台水泵供水一般不能满足用水要求,常用多泵单变频恒压供水。即是“一拖多”控制方案,这种多台泵调速的方式,系统通过计算判定目前是否已达到设定压力,决定是否增加(投入)或减少(撤出)水泵。即当一台水泵工作频率达到最高频率时,若管网水压仍达不到预设水压,则将此台泵切换到工频运行,变频器将自动起动第二台水泵,控制其变频运行。此后,如压力仍然达不到要求,则将该泵又切换至工频,变频器起动第三台泵,直到满足设定压力要求为止(最多可控制6台水泵)。反之,若管网水压大于预设水压,控制器控制变频器频率降低,使变频泵转速降低,当频率低于下限时自动切掉一台工频泵或此变频泵,始终使管网水压保持恒定。
由于“一拖多”变频恒压供水系统需要涉及压力PID控制、工频和变频的逻辑切换、轮换控制、巡检控制等功能,所以需要由专门的程序控制来实现。目前流行的“一拖多”变频供水系统主要由以下3种方式:
1)微机控制变频恒压供水系统
此系统以多台水泵并联供水,系统设定一个恒定的压力值,当用水量变化而产生管网压力的变化时,通过远传压力表,将管网压力反馈给PI控制器,通过PI控制器调整变频器的输出频率,调节泵的转速以保持恒压供水;如不能满足供水要求时,则变频器将控制多台变频泵和工频泵的起停而达到恒压变量供水。微机控制变频恒压供水系统如图3-3所示。
2)PLC控制变频恒压供水系统
PLC控制的恒压变频供水系统与微机控制器类似,所不同的是PLC除了完成供水控制外,还可以完成其他的特殊功能,具有更大的灵活性。
3)供水专用变频器供水系统
采用供水专用的变频器,不需另外配置供水系统的控制,就可完成对由2~6台水泵组成的供水系统的控制,使用相当方便;供水专用变频器=普通变频器+PLC,是集供水控制和供水管理一体化的系统,其内置供水专用PID调节器,只需加一只压力传感器,即可方便地组成供水闭环控制系统,传感器反馈的水压信号直接送入变频器自带的PID调节器输入口,而压力设定既可以使用变频器的键盘设定,也可以采用一只电位器以模拟量的形式送入;这些产品将PID调节器及简易的可编程序控制器的功能都综合进变频器内,形成了带有各种应用宏的供水专用变频器,由于PID运算在变频器内部,这就省去了对可编程序控制器存储容量的要求和对PID算法的编程,而且PID参数的在线调试非常容易,这不仅降低了生产成本,而且大大提高了生产效率。
变频器供水专用变频器框图如图3-4所示。
二、确定控制方案
由于我院实验室中的变频器为通用型,没有多泵切换功能,故我们采用PLC控制变频恒压供水系统。
在加泵过程中,变频器驱动电动机达到额定转速时,变频器内部输出继电器动作,作为一个控制信号将电动机切换到工频电网直接供电运行,而变频器再去启动其他的电动机。以达到电动机软启动和节能的目的,切换过程由PLC控制实现。减泵时,则由PLC控制直接停止工频运行的电动机。采用“启先停”方式。
以电动机M1为例,首先将KM2闭合,M1由变频器恒流启动,当电动机到达50Hz同步转速时,变频器内部输出继电器动作,送出一个开关信号给PLC,由PLC控制KM2断开,KM1吸合,电动机M1转由电网供电。以此类推。变频器继续启动其他电动机。如果某台电动机需要调速,则可安排到最后启动,不再切换至电网供电,而由变频器驱动调速。
在本系统的切换中,对变频器的保护是切换控制可靠运行的关键。系统中可采用硬件和软件的双重连锁保护。启动过程中,必须保证每台电动机由零功率开始升速。为减少电流冲击,必须在达到50Hz时才可切换至电网。KM2断开前,必须首先保证变频器没有输出,KM2断开后,才能闭合KM1,KM1和KM2不可同时闭合。PLC控制程序必须有软件连锁。
变频器有两个模拟输入端AI1和AI2,可让一个模拟输入端用作反馈信号输入,另一个模拟输入端用作给定PID的目标值,这样使得PID的目标值能平滑地随意设定,操作很方便。模拟输入端AI2接入反馈信号0~10V,同时也把反馈信号送给PLC的模拟输入端;给定的PID目标值由AI1端通过PLC的模拟输出输给定。
触摸屏直接与PLC进行点对点连接,通过触摸屏能直接给PLC启/停控制名令以及给变频器提供PID的目标值,同时能直接显示网管的压力值。